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Abstract. The Berry’s phase for non-local potentials is shldied, the salient differences vis-&-vis 
the case of local potentials is discussed and lhe generalization to the problem of coupled channels 
is presented. 

Physical systems possessing two relatively disparate time scales often permit a natural 
analysis wherein the fast variables are first dealt with, taking the slow variables to adopt 
fixed (though arbitrary) values, and then the resulting effective equation of motion (for 
the nth eigenstate) governed by the slow variables are found to involve the curl of an 
‘external’ vector potential V, (induced by the fast variables). Berry’s influential paper [I]  
has placed this feature in the general perspective of quantum mechanics. V, is called the 
Berry’s connection and W, = V x V, the Berry’s curvature, while the line integral of the 
connection in the space of slow variables or parameters. wherein the curl too was defined, is 
the Berry’s phase, which for a closed path would be the ‘magnetic-like’ flux threaded by it. 

A simple model in this context was provided by Berry 121 through what he terms a 
‘generalized harmonic oscillator’, described by the Hamiltonian 

ff = ;[WZ + t l ( t ) ( X P  + PX) + S ( 0 P 2 I  (1) 

where 6, q ,  are slowly varying parameters, while x and p are the position and momentum 
variables of the ‘oscillator’. The Berry’s curvature, for the state labelled by the quantum 
number n, is readily found to be 

where V represents the gradient operator in the space of parameters (6 ,  q, 5). Such a 
result, as we shall see, can readily be extended to yield analogous conclusions for several 
other local potentials [3]. Furthermore, we show that similar formulae can be anived at 
for non-local potentials as well. Such interactions appear naturally through exchange terms 
in physically relevant situations such as, for example, in the time-dependent Hartree-Fock 
theory or in the case of state-dependent potentials. Lastly, we shall discuss the case of 
coupled-channel problems, for which non-local separable potentials provide an analytically 
soluble model, enabling us to discern a new feature for such a situation. 
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The Berry’s connection V, is given by 

V” = Im{n lV[n) .  (3) 

To ensure the appearance of a phase in a tractable form the Hamiltonian should be chosen 
such that it is Hermitian (but not real Hermitian), and the simplest way to do so (for a 
spinless particle) is to choose the Hamiltonian appropriately generalized to 

where A,  B and the strength of the potential U ( x )  shall be taken to be the parameters which 
shall be varied, and f ( x )  is a function which shall be suitably chosen for convenient display 
of results. Of course the anholonomy that arises thereby is ‘trivial’ in that the momentum 
operator j, represented by -fig, could just as well be taken to be -”$ t g ( x ) ,  where 
g ( x )  is any real function, as it would keep intact 141 the canonical commutation relation 
[i, j ]  = 91 and would therefore be physically equivalent, as indeed the effect of this 
replacement merely results in a change of the state function by a multiplicative phase factor 
exp[- i rdyg(y) ] .  Berry’s curvature has already been worked out [3] for three local 
potentials: 

(a) Harmonic oscillator with centripetal barrier on the semi-line (x  > 0). 

with 

f ( x )  = x 

and energy eigenvalues 

The Berry’s curvature is 

(b) The Morse potential 

with 

f ( x )  = e-”. 

The Berry’s curvature is 

w --(nt;)v(y2xv(;) 1 

n -  & 
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(c) The Poschl-Teller potential 

with 

f ( x )  = tanhcx 

The Berry’s curvature is 

where 

To these examples we may append the cases: 
(d) The rectangular-well potential on the semi-line 

U ( x )  = -u&yxo - x )  (11) 

where 0 is the Heviside step function. Taking f ( x )  = a, a constant say, the Berry’s 
curvature is readily seen to be 

where p is related to the binding energy through 8’ = IEI/Ah’. 

which yields 
(e) The delta function potential U ( x )  = -U&x) with -CO < x < +w and f ( x )  = IY 

p2 being IEI/Ah2, as before. 
In all the cases involving the local potentials one notices the structure of the Berry’s 

curvatures is comprised of the vector product of gradients in parameter space of a function 
of the binding energy (through p )  and of the ratio B/A. To illustrate the nature of Berry’s 
phase for non-local potentials in a tractable manner it is convenient to choose the example 
of a non-local but separable potential U ( x ,  x‘) = -Ah(x)h(x’) on the semi-line so that the 
relevant Schrodinger equation becomes 

av 
P ( x , t )  - hh(x) d X ‘ h ( x ’ ) W ’ ,  t )  =ih--. 

2 s at  

For the instantaneous eigenfunction Y(x) of energy E = [E l  a substitution Q ( x )  = 
e-’Xcx)$(x) yields the equation 
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where ?. = 2h/AhZ and 6’ = 21EI/AhZ and x = i t S ” d r ‘ f ( x ‘ ) .  Taking f ( x )  =a! and 
h ( x )  = e-Px, this equation is easily solved to give 

( 16) @ ( x )  = N(~-Bz - e-(o-iO) 

where the normalization constant is given by 

Here a = B / A h ,  and the binding energy is obtainable from 6 = -/L + 4% - a2 and a 
bound state exists only if h > 2/1Ahz(pz + a’). The Berry’s curvature can be evaluated 
from equation (3) and yields 

While the first term is analogous to what is obtained for local potentials, we find an additional 
contribution to the Berry’s curvature (with the appearance of the gradient in parameter space 
of the normalization constant) possessing a considerably more complicated structure. The 
source of the involved expression for the Berry’s curvature in the case of non-local potentials 
may be ascribed to the fact that, as the parameters vary, the wavefunction undergoes a change 
which, because of its folding with the potential, induces a change in the effective potential 
which in turn inflicts an additional modification of wavefunction. One could indeed expect 
such features to appear in situations involving non-local potentials, such as for example the 
time-dependent HartreeFock approach. 

The problem of coupled channels appears in various areas of the physics of atoms, 
molecules, nuclei and elementary particles. While actual situations are tractable only through 
complicated numerical procedures. we go on to employ non-local separable potentials to 
obtain a model for such coupled-channel problems which admit an analytical approach 
through which we may generate the notion of Berry’s phase in this context. Considering 
channels (characterized by mass parameters Ai)  where the interactions are given by non- 
local separable potential (taken to be exponential on the semi-line 0 < x < 00, as before) 
the set of coupled-channel Schrodinger equations are given by 

where Bi are introduced as before to make the Hamiltonian Hermitian but not real Hermitian. 
Defining 

@ i ( x )  = e-iw@i(x) = Cie-iuix(e-kx - e-U-Wx) (7.0) 

where ai = B.i/Aih, ,5’: = 21E;l/Aih2 and ci are constants fixing the normalization and 
the relative weight of different channels in the bound state, we mive at the eigenvalue 
equations 
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where i i j  = Wij/Aih and Ai = ciPi/Ri = cip+i+::;. 
This set of coupled algebraic equations for the energy eigenvalues gives the condition 

for the existence of bound states. The condition that Ai/Aj  is real determines the relative 
phase between the ith and jth channel weight factors 

The normalization condition of the wavefunction 

gives 

Using equation (3), the Berry's connection and curvature obtained for the eigenstate are 

respectively. 
In a simpler case of a two-channel problem we determine the Berry's curvature 

where 
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p being the amplitude of the relative weight factors; the energy-dependent parameters are 
related to the ‘Q value’ through 

Comparing the expression for the Berry’s curvature for the two-channel case (viz 
equation (25)) with that for the singlechannel situation (18) one may note the additional 
term involving VBgz which signifies the contribution from the change due to adiabatic 
variation of the underlying parameters emanating from the relative phase of the weight 
factors of the two channels. 

In conclusion, the Berry’s phase for non-local potentials has been discussed and this 
has provided us with a soluble model eminently suitable for exposing an additional feature 
that arises in the case of coupled-channel problem. 

= $@ + 4. 
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